当前位置:主页 > 香港挂牌 >

10000以内的质数有什么?

发布时间:2019-08-21   浏览次数:

  可选中1个或多个下面的关键词,搜索相关资料。也可直接点“搜索资料”搜索整个问题。

  质数又称素数。一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数;否则称为合数。

  而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

  2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。

  尽管整个素数是无穷的,仍然有人会问“100,000以下有多少个素数?”,“一个随机的100位数多大可能是素数?”。素数定理可以回答此问题。

  1、在一个大于1的数a和它的2倍之间(即区间(a, 2a]中)必存在至少一个素数。

  3、一个偶数可以写成两个合数之和,其中每一个合数都最多只有9个质因数。(挪威数学家布朗,1920年)

  4、一个偶数必定可以写成一个质数加上一个合成数,其中合数的因子个数有上界。(瑞尼,1948年)

  5、一个偶数必定可以写成一个质数加上一个最多由5个因子所组成的合成数。后来,有人简称这结果为 (1 + 5)(中国潘承洞,1968年)

  6、一个充分大偶数必定可以写成一个素数加上一个最多由2个质因子所组成的合成数。简称为 (1 + 2)

  质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,公式规律三头数中特,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么,

  如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

  其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明

  质数又称素数。一个大于1的自然数,除了1和它自身外,不能整除其他自然数的数叫做质数;否则称为合数。

  2、其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。

  S1区间1——72,有素数18个,孪生素数7对。(2和3不计算在内,最后的数是孪中的也算在前面区间。)

  9901 9907 9923 9929 9931 9941 9949 9967 9973

  质数的个数是无穷的。欧几里得的《几何原本》中有一个经典的证明。它使用了证明常用的方法:反证法。具体证明如下:假设质数只有有限的n个,从小到大依次排列为p1,p2,……,pn,设N=p1×p2×……×pn,那么, 是素数或者不是素数。

  如果 为素数,则 要大于p1,p2,……,pn,所以它不在那些假设的素数集合中。

  如果 为合数,因为任何一个合数都可以分解为几个素数的积;而N和N+1的最大公约数是1,所以不可能被p1,p2,……,pn整除,所以该合数分解得到的素因数肯定不在假设的素数集合中。

  因此无论该数是素数还是合数,都意味着在假设的有限个素数之外还存在着其他素数。所以原先的假设不成立。也就是说,素数有无穷多个。

  其他数学家给出了一些不同的证明。欧拉利用黎曼函数证明了全部素数的倒数之和是发散的,恩斯特·库默的证明更为简洁,哈里·弗斯滕伯格则用拓扑学加以证明。

Copyright © 2002-2011 DEDECMS. 织梦科技 版权所有 Power by DedeCms

高手杀肖统计| 香港挂牌跑狗正版彩图| 本港台正牌彩图挂牌| 香港賽馬會开奖结果| 香港神算网主页| 正版马会生活幽默资料| 牛魔王管家婆彩图大全| 香港马会黄大仙发财符| 香港财神爷印图库图源| 香港创富图库中心|